Dynamic Mean-Variance Portfolio Selection with No-Shorting Constraints
نویسندگان
چکیده
This paper is concerned with mean-variance portfolio selection problems in continuoustime under the constraint that short-selling of stocks is prohibited. The problem is formulated as a stochastic optimal linear-quadratic (LQ) control problem. However, this LQ problem is not a conventional one in that the control (portfolio) is constrained to take nonnegative values due to the no-shorting restriction, and thereby the usual Riccati equation approach (involving a “completion of squares”) does not apply directly. In addition, the corresponding Hamilton–Jacobi–Bellman (HJB) equation inherently has no smooth solution. To tackle these difficulties, a continuous function is constructed via two Riccati equations, and then it is shown that this function is a viscosity solution to the HJB equation. Solving these Riccati equations enables one to explicitly obtain the efficient frontier and efficient investment strategies for the original mean-variance problem. An example illustrating these results is also presented.
منابع مشابه
Dynamic Mean-Variance Portfolio Selection with Liability and No-Shorting Constraints
In this paper, we formulate a mean-variance portfolio selection model with liability under the constraint that short-selling is prohibited. Due to the introduction of the liability and no-shorting constraints, our problem is not a conventional stochastic optimal linear-quadratic(LQ) control problem, and the corresponding HJB equation has no continuous solution. we construct a lower-semicontinuo...
متن کاملMULTIPERIOD CREDIBILITIC MEAN SEMI-ABSOLUTE DEVIATION PORTFOLIO SELECTION
In this paper, we discuss a multiperiod portfolio selection problem with fuzzy returns. We present a new credibilitic multiperiod mean semi- absolute deviation portfolio selection with some real factors including transaction costs, borrowing constraints, entropy constraints, threshold constraints and risk control. In the proposed model, we quantify the investment return and risk associated with...
متن کاملOptimal multi-period mean-variance policy under no-shorting constraint
We consider in this paper the mean-variance formulation in multiperiod portfolio selection under no-shorting constraint. Recognizing the structure of a piecewise quadratic value function, we prove that the optimal portfolio policy is piecewise linear with respect to the current wealth level, and derive the semi-analytical expression of the piecewise quadratic value function. One prominent featu...
متن کاملComparison of Mean Variance Like Strategies for Optimal Asset Allocation Problems
We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic vari...
متن کاملComparison of Mean Variance Like Strategies for Optimal Asset
5 We determine the optimal dynamic investment policy for a mean quadratic variation ob6 jective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial 7 differential equation (PDE). We compare the efficient frontiers and optimal investment poli8 cies for three mean variance like strategies: pre-commitment mean variance, time-consistent 9 mean variance, and mean quad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 40 شماره
صفحات -
تاریخ انتشار 2002